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Abstract. The Green function approach to the theory of the interacting photon-electron- 
phonon system is presented. The method of Legendre transforms is used to derive the 
Dyson equations for the photon and phonon Green functions, as well as the Bethe-Salpeter 
equation for the two-particle electron-hole Green function. Knowledge of those Green 
functions provide the excitation energies of the quasiparticles (polaritons) formed by 
coupling of excitons with photons and phonons. Examination of the poles of the two- 
particle electron-hole Green function leads to an equation for the Bethe-Salpeter ampli- 
tudes, as well as to a microscopic derivation of the Maxwell equations taking account of 
the local-field effects. A normalisation condition for the Bethe-Salpeter amplitudes is 
derived. In the limit of an instantaneous electron-phonon interaction the equations for 
determining the renormalised phonon frequencies are obtained, as well as the sum rule 
for them, similar to the Lyddane-Sachs-Teller relation. In order to define a dielectric 
function which does not depend on reciprocal lattice vectors (crystal optics approximation), 
the special eigenvalue problem is treated by successive integrations, first over rapidly 
varying photon fields and then over slowly varying photon variables. This idea provides 
both the equation for obtaining the polariton spectra and the relation between the displace- 
ment and the electric field, which does not depend on reciprocal lattice vectors 

1. Introduction 

The concepts of photon-photon and exciton-photon coupling are required for the 
interpretation of optical spectra of semiconductors. The idea of the photon-phonon 
coupling into a new set of normal modes (phonon polaritons) was derived by many 
contributors in the early-1950s (Tolpigo 1950, Huang and Rhys 1951, Born and Huang 
1952). The concept of exciton-photon coupling (excitonic polaritons) originated with 
the early works by Hopfield (1958) and Agranovich (1959). 

In the present paper, we point out that a detailed theoretical description of the 
interacting photon-electron-phonon system leads to the composite quasiparticles 
formed by coupling of excitons, photons and phonons. We use the word 'polariton' 
for those excitations. The two limiting cases (phonon polaritons and excitonic 
polaritons) can be derived from our approach. The present treatment is based on the 
powerful arsenal of quantum field theory. The fundamental point in our approach is 
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that all quantities of interest are expressed in terms of the appropriate Green functions. 
The equations for the Green functions are obtained by using the field-theoretical 
technique. This treatment leads naturally to the Legendre transforms of the generating 
functional for connected Green functions (De Dominicis and Martin 1964). 

The advantages of the present approach, which to the best of our knowledge has 
not previously been used, are as follows. 

(i) We avoid the complicated procedure of introducing boson annihilation and 
creation operators for the exciton states (Steyn-Ross and Gardiner 1983). 

(i i)  The contribution of the local-field effects to the polariton spectra can be 
accounted for without any matrix inversion procedure (Johnson 1975, Hanke 1978). 

(iii) The method is carried through without any references to the classical Maxwell 
equations (Ivchenko 1982). 

(v) The method does not use the perturbation theory. 
In $0 2-4 a method of handling local-field effects in the interacting photon-electron- 

phonon system is presented. In § 5 the above system is treated by successive integrations 
over the photon fields. In particular we derive a dielectric function which does not 
depend on reciprocal lattice vectors (crystal optics approximation). 

2. Green functions and Legendre transforms 

2.1. The model 

The system under consideration consists of a radiation field, described by a radiative 
action Si’”;.’ and a material system. In our case the material system is the semiconductor, 
described by the action for non-interacting electrons in a periodic lattice potential SF) 
and the action for ‘bare’ phonons SA*). The radiation and the matter interact via an 
electron-radiation interaction and a phonon-radiation interaction. In terms of the 
field theory we have a boson (photon) field A ,  ( z )  interacting with a spinor (or electron) 
field q ( y )  or ( * (X))  and with a boson (phonon) field U,([) at finite temperatures. 
Here y = { r, a, U } ,  x = { r ’ ,  a’, U ’ } ,  z = { p, V } ,  [ = { f, x, w }  are composite variables where 
r, r ’ ,  p are radius vectors and a, U’ are spin indices. For finite temperatures we shall 
use the ‘imaginary-time’ formulation of the finite-temperature field theory, invented 
by Matsubara (19%). This approach automatically yields results with correct analytic 
properties. According to the ‘imaginary-time’ formalism the variables U, U ’ ,  U and w 
range from 0 to hp = h ( k T ) - ’ ,  where T is the temperature, k being the Boltzmann 
constant. I = 1,2, .  . . , N is the unit cell index and x = 1 , 2 , .  . . , s characterises the 
atoms in the unit cell. There exist s atoms in a primitive cell and the crystal consists 
of N cells. 

Consider the following action 

(1) 
s = s ~ )  + shui + s;fk) + s1e-u) + s i u - ~  

where 

SF’= *(y )G“) - ’ ( y ,  x ) q ( x )  (2a)  
se;.’ = L .A, (z)D:;-’(z, z ’ ) A ~  ( z ’ )  

s;”’ = 1 
2 U, ( 43 s :; ~ ’ (, 6, 5’) Up ( 5’ 1 * 

(2b) 

( 2 c )  
In this section and throughout we use the summation-integration convention: that 

repeated variables are summed up or integrated over. G‘”-’ ( y , x )  is the inverse 
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one-particle Green function for the system of non-interacting electrons in a periodical 
lattice potential. In an (r, c) representation we have 

( y ,  x )  = exp[-iw,( u - u')]G"'~'(r ,  a;  r', v'; iw,) (3a)  G(O1-I 
W , , ,  

where the symbol is used to denote ( h p ) - '  Z,, and for the one-particle propagator 
of a fermion field, one has w m = ( 2 r / h p ) ( m + $ ) ,  m = 0 ,  i l ,  * 2 , . . .  . The inverse 
photon propagator 9 y i - ' ( z ,  z ' )  (in a gauge, when the scalar potential @ = 0) has the 
following form: 

where Vis the crystal volume, Q is the wavevector and G, are reciprocal-lattice vectors. 
Here we have restricted the summation over Q to be within the first Brillouin zone. 
The symbol ZWp is used to denote (hp)- 'Z,  and for the single-particle propagator of 
boson fields, one has w, = ( 2 7 r / h p ) p ;  p = 0, *l, * 2 , .  . . . The free-phonon propagator 
Sko,: has the form 

Here hR,(Q) are the energies of the 'bare' phonons with Q wavevector in the 
Brillouin zone and A a branch index; M , = Z , M ,  and e:(A, Q )  denotes the phonon 
eigenvectors. The inverse phonon propagator SL$-'(& 5') can be obtained from (3d)  
by means of the following normalisation conditions: 

The actions S(e-w'  and S'"-*' describe the electron-photon and photon-phonon 
interactions, respectively, 

where the electron-photon rLo) and the photon-phonon xmp vertices have the form 

In the above expressions T e ( q )  denotes a single-particle current operator. The 
polarisation of the crystal at point p due to the atomic displacements U: from their 
rest position is equal to P, ( p )  = P :,( p - R,)uF, where P :, are phenomenological 
parameters. 
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2.2. Schwinger equations 

All propagators, which are vacuum expectation values of the time-ordered products 
of field operators, can be obtained by functional differentiation from the generating 
functional 

W [ I ,  J,  MI = aP((q, 9, A, U )  e x p [ J , ( z ) A , ( z ) + I , ( 5 ) ~ , ( 5 ) - ~ ( y ) M ( y ,  x W ( x ) l .  

( 5 a )  
I 

Here I , ( [ ) ,  J,(z) and M ( y ,  x )  are the sources of the corresponding fields. The 
measure 9 p  is given by 

9 p [ q ,  9, A, U ]  = constant x exp(S)  d q  d 9  d A  d u  

Z [  I ,  J,  MI = In W [  I, J,  MI  

( 5 b )  

( 5 c )  

where the normalisation constant is chosen so that 5 9 p ( q ,  9, A, U )  = 1. By definition 

is the generating functional of connected Green functions. 

should set I = J = M = 0). 
Let us introduce the following definitions (after the functional differentiation one 

Photon Green function: 

9 @ ( Z ,  z ’ )  = -S2Z/SJ,(z)SJp(z’). ( 6 a )  
Phonon Green function: 

S,p(S, 5’) = -~’Z!~I,(5)6~,(5’). 
One-particle electron Green function: 

G(x, y )  = - 6 Z / S M ( y ,  x ) .  

Two-particle electron-hole Green function: 

Electron-photon vertex function: 

Electron-phonon vertex function: 
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2.3. Second Legendre transform 

By generalising in an obvious way the standard procedures of analytical mechanics, 
in particular the Legendre transforms, we can go over from the functional Z [ I ,  J ,  M I  
to a new functional V [ L ,  R, GI such that the conjugate equations hold: 

where V [ L ,  R, GI is given by 

V [  L, R, GI = - J,  ( 2  1 R, ( Z )  - IQ ( 5 ) L  (5) + M ( Y ,  x )  G(x ,  Y ) .  ( 9 b )  

In the above equation I ,  J and M must be considered as functionals of L, R 
and G. 

3. Local-field effects and elementary excitation spectra 

3.1. Photon Green function and dielectric function 

We will study the photon Green function by using the method of the second Legendre 
transform. By means of the identity 

( 1 0 0 )  
S J n ( z )  SRy(2“) S J a ( z )  S L Y ( ( ) +  S J a ( z )  SG(x, Y )  +-- --- - 

SR,(z”) GJp(z’ )  S L Y ( ( )  S J p ( z ’ )  SG(x, y )  S J p ( z ‘ )  

one sees that the photon Green function satisfies the Dyson equation of the form 

9 , p ( z ,  z ’ )  = 9b$(Z, Z ’ ) + 9 L O $ ( Z ,  z”)rIyc(z”,  z”’)9a,p(z”‘, z ’ )  ( l o b )  

where r I a p ( z ,  z‘)  is the proper self-energy of the photon which can be written as a sum 
of two parts 

r I , p ( z ,  z ’ )  =rI:;yz, Z’)+rI$(Z, z ’ ) .  ( 1 O C )  

The phonon part rI$) of the proper self-energy has the form 

IIgh(z, z ’ ) = T h O ’ ( y , x / z ) G ( x , y ’ ) G ( x ’ , y ) r p ( y ’ ,  x’lz‘) (10e )  
where T,(y ,x l z )  is the electron-photon vertex function ( 6 e ) .  An equation for 
T n ( y ,  x l z )  (the Edward equation) can be easily obtained after differentiation of the 
Schwinger equation (7c)  over J , ( z ) ,  taking into account that the mass operator must 
be considered as a functional of L, R and G. The Edwards equation has the form 
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Let us introduce a two-particle electron-hole Green function for ‘mechanical’ 
excitons K M  (Glinskii and  Koinov 1986, 1987): 

where K“’ is the free two-particle propagator 

K‘”(  * ”) = G(x, y‘)G(x’,  y ) .  
Y x’ 

By using (11) and (12a) one can obtain n:; in the form 

Let us introduce the Fourier transform of any functional of the photon variables 
4+(z ,  z’). In a perfect crystal, translational symmetry requires 4,0( p + R, ,  p’+  R I ;  
U - v ’ )  = c$,~( p, p ’ ;  v - U ’ ) ,  so that the Fourier transform is given by 

Here we have restricted the summation over Q to be within the first Brillouin zone 
and  G,, Gm are reciprocal-lattice vectors. 

By the definition the dielectric-matrix tensor E , ~  is given by 

After Fourier transforming (15a) one sees that 

~ a p ( Q +  Gn, Q+ Gm; iwp) 
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Let us introduce the Fourier transform of any two-particle Green function K ( :; :;). 
Due to the time-translational invariance K is a function of u21 = u2 - U , ,  u43 and u 1 3 .  
The Fourier transform has the form 

Taking the Fourier transform of (13), one can obtain that the electron part of the 
proper self-energy assumes the form 

nF2cQ-t- Gn, 0’ G m ;  imp) 

x ( r 3 , ~ 3 I j ^ p ( - Q - G m ) I ~ q ,  ~ 4 4 ) .  (18) 
It can be shown that the simple contributions to the kernel S Z / S G  in (12a) come 

from the screened Coulomb interaction and from the phonon exchange contribution, 
so that in the lowest-order approximation the quantity K M  is a two-particle propagator 
which describes the propagation of an electron-hole pair initially in states (r3u3;  r4u4) 
which are scattered into final states ( r l u l ;  r2u2) by the screened Coulomb and phonon 
exchange interactions (Glinskii and Koinov 1987). 

3.2. Phonon Green function 

Using the identity 

In the above equation we have introduced the ‘bare’ electron-phonon vertex 

ek“Yy, x 15) = -xy.(z I 5 ) q ; ( z ,  z ’ ) r r ’ (Y ,  x I z’). (19d) 
The Edwards equation for the electron-phonon vertex function 8,(y, x 15) can be 

obtained from the Schwinger equation (7c) after differentiation over Z,(t). This 
equation has the form 
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where the two-particle propagator K ,  satisfies the equation 

(2061 

If we introduce a photon propagator 9:; which satisfies the Dyson equation 

9:;(2, z ’ )  = 9 $ ( z ,  z’)+9;o;(z, Z ” ) r I $ ( Z ” ,  2”’)9:;(z”‘, z ’ )  ( 2 1 a )  

The Fourier transform of ( 2 1 b )  may be easily obtained by means of ( 4 d ) .  The 
result is 

3.3. Bethe-Salpeter equation 

The Bethe-Salpeter equation for the two-particle electron-hole Green function ( 6 d )  
can be obtained by means of the identity 

6 ( x  - x’) S(y - y ’ )  

- - 6M(Y ,  x )  

- - S M ( y ,  x )  SR,(z) + SM(Y,  z )  6L,(5) 

6M(Y‘ ,  x‘)  

SR,(z)  6 M ( y ’ ,  x’)  %(5) 6 M ( y ’ ,  x’) 

S M ( y , x )  6 G ( x ” , y ” )  
6G(x” ,  y”)  SM(y’ ,  x’)  

+ 
From ( 2 2 a ) ,  one sees that function ( 6 d )  satisfies the Bethe-Salpeter equation 

where the photon propagator 9:;’ is defined by the Dyson equation 

9 L ? ) ( Z ,  z ’ )  = 9:;(z, z ‘ )+  9:O;(Z, Z ‘ ‘ ) q , , ~ ( Z ’ ‘ ,  z”’)9:;~(z”’, 2‘). ( 2 2 c )  

3.4. Analytic properties of the Green functions 

By means of the second Legendre transform and the equations for appropriate Green 
functions of PO 3.1-3.3, one can obtain the following relations between the photon and 
the phonon Green functions on the one hand and the two-particle electron-hole Green 
function on the other hand 

(23a) 

( 2 3 b )  

% p ( z ,  2 ’ )  = 9 $ ’ ( z ,  z’)+9:; , ’ (z,  z”)nyo(z”,  z”’)9:!)(z“’) z ’ )  

S o p ( 5 ,  5’) = SL>’(5, 5’)+S&’(5, 5”)RYA5”,  511””’(5”’, 5’) 
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where the phonon propagator S$) is defined by the Dyson equation 

S:;Y(5, 5 ’ )  = SL;-’(& 5 ’ ) - X , e ( z 1 5 ) q 3 z ,  z’)xupP(z’15’). (23c) 

The quantitites IIep and R,, are the photon self-energy and the phonon self-energy, 
respectively, and they are straightforwardly connected to the two-particle electron-hole 
Green function 

IT,,(z, z ’ ) = I ‘ ~ ’ ) ( y , x / z ) K  ( y:)r;O)(y, x’ I z ‘ )  (24a) 

Rap(5, 5’) = Ob“’(Y, X I  5)K ( y:)e;)(y, 5’). 

Y X  

(24b) 
Y X  

By means of the second Legendre transform and using the identity O =  
SJ, ( z ) /  SI, (0, it is also possible to write relations between the photon and the phonon 
Green functions: 

(24c) 

(24d 1 

(24e) 
From (22)-(24) one can conclude that three Green functions 9,,, Sap and K have 

We continue by analysing the analytic properties of Fourier transforms of those 

% p ( z ,  z ’ )  = 9:;k z ’ )  + B:;(z, Z ” ) X Y T ( Z ” l  5)S7,(5, 5 ’ ) X O S ( ~ ” ’ 1  5’)9$(”’l z ’ )  

S,,(5, 5’) = SL$(5, 5’)+ SLO& S ” ) X T Y ( Z 1 5 ” ) ~ & ,  ~ ’ ~ X s o ~ ~ ’ I 5 ” ’ ~ ~ ~ ~ ~ 5 ” ‘ ,  5’) 
where the propagator 9:; is defined by the Dyson equation 

g ( e ) - ’ ( z ,  z t )  = ~ c o ) - ‘  ,p ( z ,  z’)-rI:;(z, z’). 
eP 

identical poles. 

three Green functions, i.e. 

and 

Any well defined elementary excitation of wavevector Q and energy spectrum hw,( Q )  
of the system under consideration manifests itself as a pole near the real axis in the 
frequency plane of the functions 

the analytic continuatioms of the corresponding Green functions off the set of points 
along the imaginary axis into the appropriate half of the z plane. Thus, the contributions 
from the composite (exciton-photon-phonon) polariton state U,(  Q) to the above 
Green functions can be written as 
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where F i ( z ) ,  i = 1,2 ,3 ,  are terms regular at z = w , ( Q ) .  In the case of the degenerate 
polariton state w , ( Q )  equations (25) must be generalised in a suitable way (Nakanishi 
1969). 

On substituting (25a) for the pole term of K in the Bethe-Salpeter equation (22b), 
we compare the residues at z = w,( Q )  of both sides. One then derives the following 
equation for determining the Bethe-Salpeter amplitude @"'( r2u2; r lu l ;  u 2 1 )  

where the current J:'(Q + G , )  is defined as 

From (27a) and (26) we obtain the following set of equations: 

( 2 S m p ~ 0  + Gn, o + G m ;  wv) - 8 m p a G , , G ! , , ( 0 +  G n ) *  
G,,, 

+ ~ G , , G , , , ( Q +  G n ) u ( Q +  G m ) p ) A b O ( Q + G m ) = o  ( 2 . 8 ~ )  

which are identical with that obtained by looking for normal-mode solutions to the 
Maxwell equations in a crystal. The vector potential A:'( p, t )  for the (v, Q )  normal 
mode is given by 

Similarly, 

represents the displacement of the (1 x )  atom in the (Y direction. 
Since (26) is homogeneous, it cannot determine a multiplicative constant of the 

Bethe-Salpeter amplitude @"'. In order to find a normalisation condition we introduce 
the Fourier transform of the Bethe-Salpeter amplitude 

@"'(r2a,; t ,u,;  U,,) = e x p ( - i w , ~ ~ ~ ) @ " ~ ( r ~ u ~ ;  r l u l ;  iw,). (29) 
Wll, 
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By comparing the residues at z = w, (  Q )  of both sides of the identity K = K K - ' K  
one can find the normalisation condition in the form 

where 

and using equations (26) and (27a), the normalisation condition (30a) can be rewritten 
in the form (Glinskii and Koinov 1986, 1987): 

+ Q + Gn, Q + Gm; u u ) ]  0 + Gm I} (30c) 

where the electric field EZQ( Q + G,,), which corresponds to the (v, Q )  normal mode, 
is given by 

4. Instantaneous electron-phonon interaction 

In the gauge we have used (the scalar potential is set equal to zero) one can separate 
the effective electron-phonon vertex Br'into an instantaneous part and a retardation 
part by writing the photon propagator as a sum of a longitudinal (instantaneous) part 
and a transverse (retardation) part. 
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From (19) one sees that in the limit of the instantaneous electron-phonon interac- 
tion, the phonon Green function assumes the form 

x EX,*( F,  Q)[(iwp)2 - w;(Q)I-'E;;'( II, 0) .  (31a) 

In the above equation the renormalised phonon frequencies w, (Q)  and the new 
phonon eigenvectors E : (  w, Q )  can be obtained from the standard eigenvector-eigen- 
value (U,(,!, 0) -w , (Q) )  problem: 

E : (  F,  0) = c KW, Q)e:(A, 0 )  
A 

where the instantaneous part of the proper self-energy of the phonon is 

Here &\r'-'(Q+G,,, Q+G,; 0) can be obtained from the electron part of the 
dielectric function (15) at zero frequency by picking out the transverse components 
via the equation 

and after that inverting the matrix E ; , ~ ' (  Q + G,, Q + G,; 0). 
By means of equations for 'bare' phonon frequencies 

1 [fii(Q)s,ps,,,-D",'((Q)Ie;;'(A, Q )  = O  
P ,  X '  

where D$(Q)  is the dynamical matrix, and using (31), one sees that the following 
sum rule holds: 

A characteristic feature of the optical processes in polar semiconductors is the 
predominance of the interaction of photons with LO phonons as compared with phonons 
of other types. Thus in polar semiconductors the short-range part of the photon-phonon 
vertex ,yo@ ( z  15) can be neglected in comparison to its long-range part. In a cubic polar 
semiconductor with two atoms per cell in the Q+O limit we have & ( A ,  Q)Qa/lQ1= 
Z6A,Lo, where Z is the effective charge. Thus, the well known Lyddane-Sachs-Teller 
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relation w:.o = R$oxo/x, can be derived as a consequence of the sum rule (32b), where 
the following notations have been used: 

x,'= Iim &;; ' - ' (Q+o,  Q+o ;  0 )  ( 3 2 ~ )  
0-0 

5. Crystal optics approximation 

As pointed out in 0 3.4, the examination of the poles of the two-particle electron-hole 
Green function leads to the Maxwell equations (28a). The basic problem with obtaining 
the spectra w,( Q )  from (28a) is that in principle the dielectric matrix E , ~ (  Q + G,, Q + 
G,; w , )  has an infinite number of components. This problem was most accurately 
solved by Johnson (1975) who pointed out that, for cubic crystals in the Q + O  limit, 
there are solutions of (28a) of the form 

E ( w ) w ' ( Q )  = c2Q2  

where E ( W )  follows from the Q + 0 limit of the G, = 0, G, = 0 component of the inverse 
dielectric matrix E - ' (  Q +  G,, Q+ G,; U " ) .  

In this section and throughout the remainder of the paper we will propose a new 
method for obtaining the polariton spectra, which enables us to avoid the complicated 
procedure of the matrix inversion. The method enables us to define a new tensor 
E , @ ( Q ,  0,) that provides both the equation for obtaining the polariton spectra w , ( Q )  
and the relation between the displacement D;'(Q) and the electric field EEQ(Q) 
corresponding to the (v, Q )  normal mode in crystals. 

5.1. Method of successive integrations over the photon fields 

The method of successive integrations first over rapidly varying photon fields and then 
over slowly varying photon fields is similar to that of tackling the infrared divergence 
phenomena in quantum electrodynamics (Popov 1983). 

Let us write the photon field as a sum of two parts: the Fourier transform of the 
first part contains components with wavevectors Q within the first Brillouin zone 
(slowly varying fields), while the Fourier transform of the second part contains com- 
ponents with wavevectors Q +  G, (rapidly varying fields). By performing the integra- 
tion over the rapidly varying photon fields in the generating functional ( S a )  we obtain 

(33a) 
In  the above equation and throughout the remainder of the paper A, ( z )  is a slowly 

varying field. The new measure 9 u  is obtained by integration of (5b) over the rapidly 
varying photon fields 

(336) 
The normalisation constant is chosen so that 9v = 1 and the new action SI is given by 

( 3 4 )  

9v(*, q, A, U )  = constant x exp(S,)  d g  d 9  dA du. 

s - s;l + sku 1 + s;<ll + S { U - < X  + s " - w  J + s 1 e - < > l  + s ' e - e l .  
1 -  
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In the above equation SF’ has the form given earlier by ( 2 a ) .  The rest of the actions 
are defined by the following equations: 

( 3 5 a )  

( 3 5 b )  

Z G Koinov and G F Glinskii 

Sbu ’ = ;Aa ( z ) 2 :$- ( Z,  z ’ )  A, ( 2 ’ )  

S ‘ ” - R ’ =  A , ( Z ) X , ~ ( Z I S ) ~ ~ ( O  ( 3 5 c )  

S ( e - w ) =  g ( y ) r h o ’ ( y ,  x l z ) V ( x ) A , ( z )  ( 3 5 d )  

S‘e-‘2’=%(y)ih0’(y, x / 5 ) Y ( x ) u , ( ( )  ( 3 5 e )  

sa1 = t u ,  (5) i$- ’ ( 5, 5’) up (5‘) 

= - i % ( y ) Y ( x ) I E ( ;  ;:)*(yw(xo (35f  

where the following notations have been used: 

Shy’(5, 5 ’ ) - S : ; - ’ ( s ,  5 ’ ) - X ’ , J Z I S ) q % ,  z’)i,p(z‘IS’) (36a  

ik“’(y,x1()=-q3O’(y, xlz)G;o;(z, z’)X’,,(z‘l[) (36b  

In (33 ) - (36 )  there are some quantities, such as J a ( z ) ,  A,(z) ,  9k$(z, z ‘ ) ,  rko’(y, x l z )  
and xmO(z I e), which depend on photon variables z, z’. Those without a tilde symbol 
are just the long-wavelength limit of our earlier definitions, since only G, = 0 terms in 
their Fourier transforms are retained. The G, # 0 terms are included in the quantities 
with the tilde symbol. ;Lo’ is the short-wavelength limit (or  the short-range part) of 
the ‘bare’ electron-phonon vertex function earlier defined by ( 1 9 d ) .  

+ 84, 
A + A + SA, U + U + Su, the following (Schwinger) equations hold: 

( 3 7 a )  0 = 6-jjCOl-l ( z ,  z ‘ )Rp(Z’)+J*(Z)+ G ( x ,  Y)r‘,0’(Y, xIZ)+xXap(Z15)Lp(5)  

( 3 7 6 )  0 = $‘”‘-I ap (5, 5 ’ ) L p ( 5 ’ ) + I a ( 5 ) + G ( X , y ) i b 0 ) ( y , X 1 5 ) + R p ( Z ) X p , ( Z I 5 )  

O =  G - ’ ( y ,  X)  - G‘O’-’(y, X)  + M ( y ,  X )  +E (y ,  x ) .  ( 3 7 c )  

Since the functional measure (33 b )  is invariant under the translations % + 

m p  

1 

In the above equations R,(z) and L a ( [ )  are defined earlier by ( 6 g )  but in this case 
the Fourier transform of R, ( z )  does not contain components with wavevectors outside 
of the Brillouin zone. 
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5.2. Photon Green function and E , ~ (  Q, w )  tensor 

Using the method of the second Legendre transform and by means of the identity 
( l o a )  one sees that the Dyson equation for the photon Green function ( l o b )  also 
holds. Due to the integration over the rapidly varying photon fields, the proper 
self-energy of the photon rIaP(z, z’) can be written as 

x y’ 
n:;iz, z f )  = r:1yy, xlz)Kl“lj xtlz‘) i39c)  

Y X  

where K “ ’  is the free-electron-hole propagator ( 1 2 6 )  and we have introduced the 
vertex function r;*) as foIIows: 

rh*’(y, x I z )  = rkob, X I  z)  - @“CY, x I ~)Sjp,‘(t, t ‘ )Xay(zI  6’). ( 3 9 d )  

The phonon propagator s$ in ( 3 9 d )  can be written as 

where 

X 2 r , ! i O +  G,;  i w p ) Z ? ( A ~ ,  O+ Gn)RO,!hZ(Q, iw,)Z,(A,, 0). i 41b)  
In ( 4 1 )  we have denoted y = { r ,  U, U}, x = { r ‘ ,  u’, U’} and z = { p, U}. The first term 

in ( 3 9 d )  is just the long-wavelength limit of the ‘bare’ electron-photon vertex, defined 
by ( 4 c ) .  The second term is a renormalised electron-photon vertex due  to the interaction 
with phonons. 

The Edwards equation for the vertex function r, can be obtained after differentiat- 
ing (37c )  over J u ( z ) ,  taking into account that the mass operator must be considered 
as a functional of R,, L,  and G :  
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Since the relation 6 L / S G  = SI;/SG takes place, we define a two-particle Green 
function K L  for ‘mechanical’ excitons which takes into account the Elliott exchange 
interaction IE 

where KL’ and ZE are defined by ( 1 2 a )  and (36c ) .  

Bethe-Salpeter equation: 
It is convenient to define another two-particle propagator KI1, which satisfies the 

3 (;. ;:) =S(x-x’)S(y-y’). 
y XI’ [ KL-’(  ?.,,) - f%”‘Cy, x I S)@(cS, cS’)&?(y’’, ~ ” 1 5 ’ )  K n  

By using the function K ,  we can rewrite the Edwards equation ( 4 2 a )  in the form 

(42c )  

From (39c )  and ( 4 2 d )  one sees that assumes the form 

(42e? 
II$(z, Z ’ ) = T ~ ~ ’ O , ,  xlz)Kn( X Y  :)rL”(y’, x’lz’). 

Y X  

As in 9 3 . 1 ,  Fourier transforming ( 3 9 )  we obtain the definition of the new tensor 
~ , ~ ( Q , i w , ) .  If we take into account that the Fourier transform does not contain 
components with wavevectors outside the Brillouin zone, then we define the tensor 
.sap( Q, iw,) as follows: 

where the Fourier transform of the propagator K ,  is defined earlier by (17 ) .  
In the following sections we will show that the tensor E , ~ (  Q, iw,) provides both 

the equation for obtaining the polariton spectra w , ( Q )  and the relation between the 
displacement and the electrical field corresponding to the w , ( Q )  normal mode in 
crystals. 

5.3. Bethe-Salpeter equation and analytic properties of the Green functions 

Using the identity (19a) and the method of the second Legendre transform one sees 
that the two-particle electron-hole Green function ( 6 d )  satisfies the following (Bethe- 
Salpeter) equation: 
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where the inverse propagator has the form 

- $?CY, x 1 oskw,)(t, toe:)(.v’, x ’ I  5’) 

9 ; ; ( z ,  z ‘ )  = 9 $ ( z ,  Zf)+9;O;(z, z y I y : ( z ” ,  zy3!$(z”‘ ,  z f ) .  

(446) 

where 6:’ and S$) are defined earlier. The photon propagator 9;; satisfies the Dyson 
equation 

(44c) 

By means of the method of the second Legendre transform, one sees that the 
following equation holds: 

e:)(Y, x I t’)s‘,W,’(t’, t )  
=(e’:’(Y,xIs‘)-rbn’(Y, x l z ) 9 : ; ( z ,  Z ‘ ) X , p ( Z ~ I ~ ’ ) ~ ~ I p d ( S ~ ,  0.  (44d) 

Using the above equation, the inverse propagator (446) can be rewritten in the form 

In an analogous way, using the equation 

rp(Y, x ~ z ’ ) ~ ; : ( z ’ ,  Z )  

= (rIpb, x I z o  - eb“)(y, x I t)sg’(t, s h p Y ( z ’ I  t ’ ) ) 9 ? d ( z ‘ ,  Z )  (44s) 

we can obtain from (446) another form of the inverse propagator 

Equations (446), (44e) and (44g) represent three different forms of the Bethe- 
Salpeter equation for the two-particle electron-hole Green function. 

We continue by analysing the analytic properties of the function 9,, (Q, iw,)-the 
Fourier transform of the photon propagator gap ( 2 ,  z ’ ) .  Using the method of the second 
Legendre transform and the equations for appropriate Green functions, one sees that 
the following equation holds: 

9 a o p ( z ,  z’) = @$(z, z f ) +  9 ; ; ( z ,  z ” ) r I g ( z ” ,  z”’)9“’’’, z f )  

where the photon self-energy TI$ is straightforwardly connected to the propagator K 

From (45) we can conclude that the two Green functions K and have‘ identical 
poles. 

In § 3.4 we have pointed out that any polariton state w , ( Q )  manifests itself as a 
pole near the real axis in the frequency plane of the functions K and S a p .  From (45) 
it follows that the contribution from the polariton state w , ( Q )  to the Green function, 
defined by (45a), can be written as 
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where F a p ( z )  is a term, regular at z = w,( 0). It is easy to see that FZ'(Q) is equal to 
the G, = 0 component of the vector potential A:Q( Q +  G,) defined by (27a). In fact, 
from (44a) and (44e), one sees that 

x r P ( r 3 c + 3 ,  r4c+41Q, W , ) F : ~ ( Q )  (46b) 

where @"Q is the Bethe-Salpeter amplitude, defined earlier, From (45a), (45b) and 
(46a) it follows that 

F:Q(Q)= --9zi(Q, w,)TbR'(r,c+,, rlul lQ,  ~ , ) @ . " ~ ( r ~ c + ~ ;  r l u l ;  u21 = O ) .  (46c) 
1 

hc v 
O n  the other hand, from (26) we obtain 

@"Q(r2c+2; r l g l ;  u z I )  

After comparing the right-hand sides of (46b) and (46d) we find 

II?i(Q, w,)Fi'(Q) = nc;(Q, Q+ G,;  w,)Ai'(Q+ G,) (46e) 

F?( 0) = A:"( Q + G, I G,, = A? ( 0). 
G,, 

(46f) 

By means of (46b) and (46c) one sees that A:'(Q) satisfies the following equations: 

(47a) ) ( $ E . ~ ( Q ,  U , )  - 6 , p Q 2 +  QnQp AiQ(Q) = 0 

where E , ~ (  Q, w , )  follows from the analytic continuation of E,@( Q, iw,) given by (43a). 
Looking for non-trivial solutions of (47a), we find that the polariton spectra w , ( Q )  
can be obtained from the following equation: 

(47b) 

As is well known, in perfect crystals the displacement D;'(Q) is related to the 

D P ( Q ) = C  &,p(Q,Q+G,;w,)E;;P(O+G,) (480) 

where the electric field E:'( Q + G , )  corresponding to the ( Y, Q )  normal mode is given 
by (30d). Our method allows us to relate the displacement of the wavevector Q in 
the Brillouin zone to the electric field of the same wavevector Q 

X Q ( Q )  = E , p ( Q ,  % ) ~ ; ; Q ( Q ) .  (486) 

det/l$Emp(Q, W , ) - & ~ Q ~ +  QeQp I1 = O .  

electric field EzQ( Q + G,) as 

G,, 

The last relation can be obtained by means of (48a) and by using the identity 
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This identity follows from the equation 

s,h(Q; w , , ) A ~ ~ ( Q )  = 0 (48d) 

Finally, we end this section with a short remark on how to rewrite the normalisation 
by means of (46e) and (46f). 

condition (30a) in terms of the new tensor E , ~ ( Q ,  m u ) .  By means of the identity 

and  using (44e), (466) and (46~1,  the normalisation condition (30a) can be rewritten 
(Glinskii and  Koinov 1986, 1987) in the form 

where 

is the electric field of the wavevector Q, which corresponds to the (v, Q) normal mode 
in the crystal. 

6. Conclusion 

The theory of polaritons has been presented from a microscopic quantum-field point 
of view including the local-field effects. All quantitites of interest are expressed in 
terms of the Green functions. We have pointed out that in the system of interacting 
photons, phonons and electrons, there exist well defined composite excitations 
(polaritons), which manifest themselves as poles of any of the photon, phonon or 
two-particle electron-hole Green functions. 

We have also been concerned with the question which naturally arises in crystal 
optics as to whether there is a possibility of using the tensor E , ~ ( Q ,  U") ,  which gives 
the relation between the displacement DCQ( Q ) ,  corresponding to the ( v, Q )  normal 
mode in perfect crystals, and  the electric field EEQ(Q)  of the same wavevector. 

In a subsequent work we plan to use our approach to  investigate the first-order 
Raman effect in insulating crystals that takes into account the local-field effects. 
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